CAPITOLUL VI DESCRIEREA PROGRAMULUI PSPICE STUDENT

6.1. Introduce re

Pspice Student este un program specializat pentru simularea funcționării circuitelor electronice. Elementele uzuale de circuit de tipul dispozitivelor pasive (rezistențe, condensatoare, surse de curent și de tensiune) sau active (diode, tranzistoare bipolare și MOS, amplificatoare operaționale) sunt disponibile în biblioteca de componente, având asociați un număr de parametri (în cazul componentelor pasive) sau un model (pentru componentele active).

Vor fi descrise în continuare realizarea unui circuit electronic, componentele utilizate și parametrii acestora, analizele disponibile și modul de vizualizare a rezultatelor grafice.

6.2. Utilizarea programului Pspice Student

Pentru instalarea programului Pspice Student se rulează fișierul *Setup.exe* existent pe CD. La apariția ferestrei de dialog "Select Schematic Editors" se selectează atât "Capture", cât și "Schematics". Se respectă instrucțiunile până la instalarea completă a programului.

Se deschide aplicația "Schematics" disponibilă după instalare.

6.2.1. Desenare a circuitul ui

Varianta existentă pentru instalare prezintă limitări referitoare la complexitatea circuitului și la numărul de componente disponibile în bibliotecile programului. Orientativ, complexitatea circuitului nu poate depăși 10 tranzistoare și 64 de noduri, existând, însă, posibilitatea utilizării unui număr relativ mare de diode, surse de curent sau de tensiune și dispozitive pasive.

6.2.1.1. Inserarea unei componente noi

nie:		Repeat	Space	
	No	Place Part Wire Bus Block	Ctrl+P Ctrl+W Ctrl+B	
		Arc Circle Box Polyline Text Text Box Insert Picture	Ctrl+T	
		Get New Part Rewire	Ctrl+G Ctrl+D	
2				2

Se selectează numele componentei dorite sau se scrie numele acesteia la rubrica "Part Name" și se validează cu "Place & Close".

Part Browser Bas	ic	
Part Name:		
Q2N2222	_	
Description:		
NPN bipolar transisti	10	
Q2N2222	~	Close
Q2N2907A	_	
Q2N3906		Place
Q2N6052 Q2N6059		Place & Close
QbreakL QbreakN		11-1-
QbreakN3 ObreakN4		Неір
QbreakP QbreakP2		
QbreakP4		Libraries
QD arBreakN QD arBreakP	_	
r B var	~	Advanced >>
In the	10 - X	
Full List		

6.2.1.2. Interconectarea componentelor

ALL DOTATION.	Spice Sc	hematic	cs - [*So	chema	atic1	p.1]								
手 F	ile Edit	Draw N	lavigate	View	Optic	ons A	Analysis	Tools	Marke	ers W	indow	Help		-	E X
D	2	Repea	at	Spa	се			2 Q	Q	0		94	Q2N22	22	
		Place	Part	Ctrl-	+P	T	11.1								
		Wire		Ctrl	+W	1	千叶								
~1	10 0 10 10 10 10 10 10 10 10 10 10 10 10	Bus		Ctrl-	+B			10 10 10 10 10 10 10 10 10 10 10 10 10 1	0. 500	100.51 2	10 1001 0 10 1000 0	10 1000 10 1000	t de sout	10.05	~
7	0.2.2	Block								191 I		1 134			
	16 (B) (C)	Arc				80		0.500	8.836	868 B	6 600 0	6 535	0.000	838-1	6 6 📕
Oll	3 5 5	Circle				10	8 808	10 100			5 506 5		10 100		
a	0.00	Box				2.1					n 4550 a	9 883	10 1005		
-	N 12 13	Polylin	ne			2.3	2 202	12 202			2 202 1	19 1903	1 10 1002	3999	
₽₽ ^B		Text.	1800. ••	Ctrl-	+T	12		18 - 5019 14 - 5014	18 - 5038 14 - 5018	1004		8 808 • •	6 (8) 4008. 	9004	8 83 • • •
A		Text F	Box	100000				1.02			01	1			
100	$(0,\infty,\infty)$	Insert	Picture			3.3	e 100	1	6 836	863 B	· · ·	k eas	 (a) (c)) 	1939 -	6.6
	1 1 1			999 1999	20420	1	t tilt	. All	10 101	131		1 191	1.11.101		
	14 14 45 14 18 45	Get N	ew Part	. Ctrl-	+G		Q2N22	22		1004	e esse	Q2N	2222	8004	
	2 2 2	Dowin		Chrl	чD			131 50105	11 100	1001 0	1 1000 U	ta 1000	to toot	toot a	
	2.2.2	Kevvin	<u> </u>	cur	τυ	10.1					8 <u>888</u> 8				
	0.018														
															~
	<	[111]													>
1.58	8, 0.21	Draw a	new wire							Cm	nd: Flip				
1 P	Spice Sc	hematic	cs - [*So	chema	atic1	n.1	T								
F	ile Edit	Draw N	lavigate	View	Optic	ons A	Analysis	; Tools	Marke	ers W	indow I	Help		-	a ×
D	2	3	6 6	a 🖌	na	8		Q 🕲	Q	0		94	Q2N22	22	
							4 41								
C.uni	Nor	10 -	. @	2	$\mathbf{v} _{\mathbb{T}}$	I	Ĩ.₩								
	Nor	ne -	· 🔊	<u></u>	V 7	I	<u>⊥</u> ++								~
	Nor		-] <u>»</u> ,	<u></u>	<u>v </u> ⊉	7 I	<u>I</u>	5 101	5 I.C		 1 131 1	1 10		131	
	Nor		- <u>P</u> .	<u><u></u></u>			<u>⊥</u> ++	1 131 a 234	1 1.1 1 1.1 2 2.3			1 [3] 6 636			· · · /
	Nor			<u></u>			I				 1 1 1 1 	 1 [3] 	1 2 101 4 2 201 4 2 204		· · · ^
	Nor		• <u>»</u>												
	Nor			P	V +	1					 1 101 1 2 202 0 2 203 0 2 203 0	1 100 e kon 1 100 e kon			
	Nor		· <u>»</u>		<u>v</u> ∓							1 101 6 600 1 101 6 600			
	Nor		· <u>»</u>	<u>P</u>	V ∓										
	Nor			A											
	Nor														
	Nor														
	Nor						02N22				01 	Q2N	2222		
	Nor						.02N22	222			a1	 Q2N			
							02N22	222			a1	 Q2N			
							<u>02N22</u>				01	 Q2N	2222		
		ne					02N22	122			Q1	 Q2N			

6.2.1.3. Elemente de circuit

Vor fi prezentate pe scurt doar dispozitivele pasive și active utilizate în simulările propuse în partea a doua a fiecărui capitol.

Modificarea parametrilor dispozitivelor pasive se realizează astfel:

- Se selectează componenta respectivă
- Se vizualize ză lista parametrilor

📝 PSpic	e Schematics - [*S	chematic1	i p.1]	\mathbf{X}
File	Edit Draw Navigate	View Opt	ions Analysis Tools Markers Window Help 🔤 d	×
	Undo Redo	Ctrl+Z Ctrl+Y		
	Cut Copy Paste	Ctrl+X Ctrl+C Ctrl+V		
	Delete Select All	DEL		
₽ ₽	Attributes	Ctrl+F		
	Model Stimulus Symbol		R1 \$1k	
	Graphics Properties.	1	- 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	views Convert Block			
1 .82, 0	Rotate Flip	Ctrl+R Ctrl+F	Cmd: Attributes	> //.

PSpice Schematics - [*Schematic1 p.1] Prile Edit Draw Navigate View Options Analysis Tools Markers Windo Prile Edit Draw Navigate View Options Analysis Tools Markers Windo Prile Edit Draw Navigate View Options Analysis Tools Markers Windo Prile Edit Draw Navigate View Options Analysis Tools Markers Windo	w Help _ d X
R1 PartName: r Name Value TEMPLATE = R^@REFDES %1 %2 ?TOLERANCEIR^@	e Attr
* TEMPLATE=R^@REFDES %1 %2 ?TOLERANCE/R^@REF Change * REFDES=R1 VALUE=1k VALUE=1k Del * PART=r TOLERANCE= PKGTYPE=RC05 GATE=	Display ete R1
✓ Include Non-changeable Attributes 0 ✓ Include System-defined Attributes Car	K incel
4.63, 1.33 Crnd: A	Attributes

Se modifică în mod corespunzător parametrii doriți ٠

🛃 P	Spice So	chematics - [*Schematic1 p.1]		
1	File Edit	Draw Naviga	e View Options Analysis Tools I	Markers Window Help	- 8 ×
D	2	🕘 🔏 🖻		1 6 C 0 9 1	
	No.	R1 PartNa	ne: r	X	
51		Name	Value		~ ~ ~
<i></i>		VALUE	= 10k	Save Attr	
믱		* TEMPLATE * REFDES=F	=R^@REFDES %1 %2 ?TOLERANCE P	Change Display	
a	9 8 .	VALUE=1k		Delete	
AB		TOLERANO PKGTYPE=)E= RC05		
A	3 8 3	j GATE=			1000
		🔽 Include No	n-changeable Attributes	OK	
		🔽 Include Sy	stem-defined Attributes	Cancel	
	888				101 10 10
	14 4 5	a ana a ana			- 403 B B
	11 11 12	ter ter tert	to test to test that do test to test to	test that do test do test do test	🗸
	<				>
1.8	2, 0.20	Edit Attribute	5	Cmd: Attributes	

Modificarea pametrilor de model ai dispozitivelor active se realizează astfel:

- Se selectează componenta respectivă Se vizualizează parametrii de model •
- •

	Undo	Ctrl+Z	1																	
-	Redo	Ctrl+Y		(2	Q	Q	5	0	Ø		9	0	221	N22	22			
	Cut Copy Paste Copy to Clipboard	Ctrl+X Ctrl+C Ctrl+V		<u>I</u>			 1911 2015	-	 101 104							 1931 				1
2	Delete Select All	DEL		8		100 E				101	100 A.		8		4004 1004			1	調整	
8	Attributes Label	Ctrl+E											03						100	
	Stimulus Symbol Graphics Properties													Q2	N22	222			新設和	
	Views Convert Block			9 8 7	151 1980 1990	14 18 15	1811 Kont Kont	24 28 28	25.1 6036 1603	135 869 201	94 18 18	202 680 500	8 8 8	NU Cont Nont	9 8 7	2352 6296 1625	111 809 202	8	新新	,

Schematics - [Schematics - [Schematics - [Schematics -] Schema	n <mark>atic1 p.1]</mark> v Options Analysis Tools Markers V	Mindow Help _ = = :
	<u> </u>	🔽 🗋 🙀 🛛 Q2N2222
None 🗸 🔊 👰		
C Edit Model	· · · · · · · · · · · · · · · · · · ·	n to the transformer t
	<u></u>	
C- Name: 02N2222	Change Model Reference	
RB -	Edit Instance Medel (Teut)	Ω3
Cancel Help		
	Edit Instance Model (ModelEditor)	Q2N2222
	the state works an entry the state works where works	
<		>
1.69, 0.21 Schematic saved.	P	lace Part

Se alege opțiunea "Edit Instance Model (Text...)".

PSpice	Schematics - [Schematic2 p.1]				
	Copied From Model Name: Q2N2222X Library: C:\\Library\PSpice\eval.lib	Save To	D:\users\temp	2	
	model Q2N2222X NPN(s=14.34f Xh=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307 Ise=14.34f Ikf=2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0		 		and w how we are a rule and w and [1]
11	Expand AKO(s)	OK Cancel	Help	11	
2.24, 0.23			Cmd: Place Part		- //

• Se modifică în mod corespunzător parametrii doriți.

Dispozitive pasive

- a. Rezistența
- Simbol: R
- Parametru utilizat: VALUE

b. Condensator

- Simbol: C
- Parametru utilizat: VALUE

Dispozitive active

a. Dioda

• Simbol: *D1N4148*

b. Dioda Zener

- Simbol 1: D1N750 coeficient de temperatură negativ
- Simbol 2: D1N958A coeficient de temperatură pozitiv

Observație: Deoarece dioda *D1N958*A nu este disponibilă în versiunea Pspice Student, este necesară crearea acesteia. Se procedează astfel:

- Se inserează o diodă Zener de tip D1N750
- Se înlocuiește tot modelul diodei D1N750 cu modelul diodei "D1N958A"

```
.model D1N958AD(
Is=2.077f
Rs=2.467
Ikf=0
N=1
Xti=3
Eg=1.11
Cjo=104p
M=.5061
Vi=.75
Fc=.5
Isr=1.645n
Nr=2
Bv=7.5
Ibv=.90645
Nbv=.39227
Ibvl=.5849n
Nbvl=1.5122
Tbv1=533.33u)
*Motorola
                pid=1N958A
                               case=DO-35
*89-9-18 g jg
*Vz = 7.5 @ 16.5mA, Zz = 12.5 @ 1mA, Zz = 5.3 @ 5mA, Zz = 2.3 @ 20mA
*$
c. Tranzistorul bipolar NPN
```

- Simbol: *Q2N2222*
- Parametri utilizați: Vaf tensiune Early și Is curent de saturație

d. Tranzistorul bipolar PNP

- Simbol: *Q2N2907A*
- Parametri utilizați: Vaf tensiune Early și Is curent de saturație

e. Tranzistorul NMOS

- Simbol: IRF150
- Parametri utilizați: W/L factor de aspect, V_{t0} tensiune de prag și R_{ds} rezistență drenă-sursă

f. Tranzistorul PMOS

- Simbol: IRF9140
- Parametri utilizați: W/L factor de aspect, V_{t0} tensiune de prag și R_{ds} rezistență drenă-sursă

g. Amplificatorul operațional

• Simbol: *uA*741

Surse de curent și de tensiune

- a. Sursa de curent DC
- Simbol: ISRC
- Parametru utilizat: DC valoarea curentului de ieșire

b. Sursa de tensiune DC

- Simbol: VSRC
- Para metru utilizat: DC valoarea tensiunii de ieșire

c. Sursa de tensiune sinusoidală

- Simbol: VSIN
- Parametri utilizați: VOFF tensiunea de offset (se consideră egală cu zero), VAMPL amplitudinea tensiunii sinusoidale și FREQ frecvența tensiunii sinusoidale

d. Sursa de tensiune AC

- Simbol: VAC
- Parametru utilizat: *ACMAG* se alege o valoare nenulă pentru acest parametru, domeniul său de variație fiind stabilit în cadrul analizei *AC* (a se vedea paragraful 6.2.2.5.)

e. Sursa de tensiune VPWL

- Simbol: VPWL
- Parametri utilizați: T_1 , V_1 , ..., T_{10} , V_{10} fiecare pereche $T_k V_k$ definește un punct pe digrama amplitudinetimp. Se pot obține, de exemplu, caracteristici de tip triunghiular sau aproximativ dreptunghiular

6.2.2. Tipuri de analize

Studiul comportamentului circuitului este posibil prin solicitarea unui număr relativ restrâns de analize, limitat la necesitățile legate strict de exemplele prezentate.

6.2.2.1. Elemente obligatorii

- Rularea eficientă a unei analize impune existența câtorva elemente:
- Un singur punct de masă al circuitului, GND;
- Cel puțin un marker pentru indicarea mărimii solicitate pentru vizualizare (tensiune, curent, tensiune diferențială)

6.2.2.2. Analiza tranzitorie (Transient Analysis)

Permite analiza temporală a comportamentului circuitului, existând posibilitatea vizualizării evoluției în timp a semnalului (tensiune, curent, tensiune diferențială) în diferite puncte ale circuitului.

🖺 File Edit Draw Navigate View Options A	nalysis Tools Markers Window Help	∃ ×
	Electrical Rule Check Create Netlist VSIN	
None 🗸 🔊 👰 🔽 🖓	Edit Stimuli	
<u></u>	Setup	~
R1 \$1kO	Library and Include Files Simulate F11	
	Probe Setup Run Probe F12	10
₽₽ 02N2	Examine Netlist	
8 R3 ≥lk 01 R3	Display Results on Schematic	1
	5	
	9	
R4 Ş1k	<u> </u>	1
it titer tit tit	ler tot tider tot tot ^{vo} ter tot teder t	~

Parametri utilizați:

- Print Step = 0;
- Final Time; valoarea acestui parametru se alege în funcție de frecvența minimă a semnale lor din circuit, pentru a se putea vizualiza cel puțin câteva perioade.

Exemplu:

Se consideră circuitul din figura de mai jos, V_1 - *VSIN* cu amplitudinea de 10mV și frecvența 1kHz, V_2 și V_3 - *VSRC* cu amplitudinea de 9V, $R_1 = 1k\Omega$, $R_2 = 10k\Omega$, iar amplificatorul operațional de tipul $\mu A741$.

🛃 PSpi	ce Sche	matics	- [*inve	rsor	p.1 ((stale)							E		×
File	Edit Dr	aw Nav	vigate Vi	ew O	ptions	Analysi	s Tools	Marker	s Wir	ndow H	lelp			- 6	×
		3 %	Pa C	5	2	<u>)</u>	Q 🕲	&	00		4	VSIN			
	None	•	D Sa		7 <u>v</u>	I ⊥+									
			€ _	v1	R1.	úA7 2 √0 ³			2 A - T - T - 5		0				
	109 8 8		100 100		1.608	101 101		ц°		531 (K)S			6 553	1.11	~
3.04, 1	.31								Cmc	I: Place I	Part			3	/

Se realizează o analiză tranzitorie pentru un interval de 5ms (frecvența semnalului fiind de 1kHz, se vor putea vizualiza 5 perioade ale acestuia). Semnalele de intrare și ieșire vor avea următoarea formă:

6.2.2.3. Analiza DC

Permite baleierea unui domeniu specificat al următoarelor variabile și vizualizarea semnalului de ieșire pentru acest domeniu de variație:

- Valoarea de curent continuu a unei surse de tensiune sau a unei surse de curent;
- Valoarea temperaturii;
- Valoarea unui parametru de model sau global

	Analysis	Setup				1
	Enabled		Enabled		1	
		AU Sweep	_	Uptions	Llose	
5	Г	Load Bias Point	Г_	Parametric		18 5
	Г	Save Bias Point	Г	Sensitivity		31 10
B		DC Sweep	Г	Temperature		
	Г	Monte Carlo/Worst Case		Transfer Function		
		Bias Point Detail		Transient		11
		Digital Setup] _			
		Bias Point Detail Digital Setup		Transient	J	

Parametri utilizați:

- "Swept Var. Type" variabila al cărei domeniu va fi baleiat; pentru "Voltage Source" și "Current Source" trebuie definit doar numele sursei de curent sau de tensiune la care se face referire; variabila "Temperature" nu necesită definirea parametrilor, iar dacă se alege opțiunea "Model Parameter" trebuie definite "Model Type", "Model Name" și "Param Name";
- "Sweep Type" se poate seta tipul de variație al mărimii considerate (liniară, decadică, etc.). Este obligatorie definirea următorilor parametri: "Start Value", "End Value" și "Increment" / "Pts./Decade".

Exemplu:

Se consideră circuitul de mai sus, sursa de tensiune de intrare V_I de tip VSIN înlocuindu-se cu o sursă VSRC de amplitudine 10mV. Se realizează o analiză DC de variabilă V_I , pentru un domeniu de variație liniară a acesteia cuprins între -10mVşi 10mV, cu un pas de 0,1mV. Dependența tensiunii de ieșire de tensiunea de intrare va avea următoarea formă:

6.2.2.4. Analiza DC Nested Sweep

Reprezintă o completare a analizei *DC Sweep* pentru analiza parametrică a circuitului, parametrul putând fi o sursă de tensiune sau de curent, temperatura sau un parametru de model. Parametri utilizați sunt identici cu cei ai analizei *DC Sweep*.

Exemplu:

Se consideră oglinda de curent din figura următoare.

😰 PSpice Sc	hematics - [OGL_BIP p.1 (current)]	
File Edit	Draw Navigate View Options Analysis Tools Marke	ers Window Help _ 🗗 🗙
		▼ □ ₽ Q2N2222
Nor		
	VI RI ≩1k	
3.33, 2.31	Schematic saved.	Cmd: Mark Current into Pin

Se consideră tranzistoarele T_I și T_2 de tipul Q2N2222, V_I și V_2 de tipul VSRC (9V), $R_I = Ik\Omega$. Se dorește studiul caracteristicii de ieșire a sursei de curent, $I_{C_I}(V_2)$, considerându-se ca parametru tensiunea Early a tranzistorului NPN. Se alege un domeniu de variație al tensiunii de ieșire V_2 cuprins între 0 și 9V, cu un pas de 0,IV și un domeniu de variație a tensiunii Early VAf cuprins între 20V și 100V, cu un pas de 20V.

ver anne en alle		
Swept Var. Type Voltage Source Temperature Current Source Model Parameter Global Parameter	Name: Model Type: Model Name: Param. Name:	v2
Sweep Type C Linear C Octave C Decade C Value List	Start Value: End Value: Increment: Values:	0 9 .1
DC Nested Sweep	UK	
- Swept Var. Type		
C Temperature C Current Source	Name: Model Type:	npn
Consider Source Current Source Model Paramete Global Parameter	Name: Model Type: Model Name: Param. Name:	npn q2n2222 va
C Temperature C Current Source Model Paramete G Global Parameter Sweep Type C Linear C Octave	Name: Model Type: Model Name: Param. Name: Start Value: End Value:	npn q2n2222 va 20 100
Voliage Sould' Temperature Current Source Model Paramete Global Parameter Sweep Type Linear Octave Octave Occad Value List	Name: Model Type: Model Name: Param. Name: Start Value: End Value: Increment: Values:	Inpn 1q2n2222 1va 20 100 20

OK

Cancel

Se obțin următoarele 5 caracteristici de ieșire ale sursei de curent:

👹 OGL_BIP - OrCAD PSpice A/D Demo - [OGL_BIP (act	ive)] 📃 🗖 🔀
Eile Edit View Simulation Irace Plot Tools Window He	
📔 🗸 🕞 🎦 🛃 🎒 👗 🗎 🖻 🕄 그 으 🗍 OGL	_BIP 🕨 🚺
� � � � ↓ Ⅲ № 目 片 % ♥ `~ ✔	大学大学学校学校
18mA	
SA 2	······································
-19mA	والمتعاطفة فتقاطعن تعتو متعاطف متعاطف وتقاد
S AU 2U 4U	<u>รับ 80 100</u>
20 40 ⊡Ic(Q1)	60 80 100
3 60 20 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6'U 8'U 18U U_U2 Probe Cursor
BU 2U 4U Image: Second secon	6'U 8U 19U U_U2 Probe Cursor A1 = 4.9184, 8.6789m
BU 2U 4U Image: Contract of the second seco	ôU 8U 16U U U2 Probe Cursor 181 A1 = 4.9184, 8.6709m 8.6709m A2 = 0.000, -721.206u 01f= 4.9184, 9.3921m
BU 2U 4U Image: Contract of the second seco	o'u 8U 160 U_U2 Probe Cursor 100 A1 = 4.9184, 8.6789m 8.6789m A2 = 8.6000, -721.2860 11f= dif= 4.9184, 9.3921m 9.3921m
BU 20 40 BLC(Q1) 20 40 BLC(Q1) BLC(Q1) 40 BLC(Q1) BLC(Q1) 10 BLC(Q1) BLC(Q1) 10 BLC(Q1) BLC(Q1) 10 BLC(Q1) BLC(Q1) 10 Start = 0 Start = 0	6U 8U 10U U_U2 Probe Cursor A1 = 4.9184, 8.6709m A2 = 0.000, -721.206u dif= 4.9184, 9.3921m V_V2= 9 Enc
BU 2U 4U Image: Constraint of the constraint of t	oU 8U 18U U_U2 Probe Eursor A1 = 4.9184, 8.6709m A2 = 0.000, -721.206u dif= 4.9184, 9.3921m V_V2 = 9 Enc
BU 2U 4U Image: Constraint of the constraint of t	ou 8U 19U U_U2 Probe Cursor A1 = 4.9184, 8.6709m A2 = 0.000, -721.206u A1 = 4.9184, 9.3921m V_V2 = 9 Enc alysis (Watch) Devices / Image: Construction of the second se

Salvarea rezultatelor simulării:

👹 OGL_BIP - OrCAD PSpice A/D Demo - [I	OGL_BIP (active)]	
🛛 😹 Eile Edit View Simulation Irace Plot Too	ils Window Help 🎇	_ & ×
 • - 	New Window Close Close <u>A</u> I	▶ Ⅱ 森晶式花叉
9 10mA	Ca <u>s</u> cade Tile <u>H</u> orizontally Tile ⊻ertically	
-10mA −10mA 20	<u>I</u> itle Display Control Copy to Clipboard	8U 18U
□ Ic(Q1)	✓ <u>1</u> OGL_BIP (active)	
B OGL_BIP (a		
Reading and checking circuit Circuit read in and checked, no errors DC Analysis	× ·	
DC Analysis finished Calculating bias point Bias point calculated	Start = 0 V_V	2 = 9 Enc
Simulation complete	Analysis & Watch & Dev	vices /
Copy the current plot window to the clipboard	V_V2 = 9 10	

🦓 M	icros	oft P	hoto Ec	litor			
File	Edit	View	Image	Effects	Windov	v Help	
∥С	Un Re	do do		Ctrl+ Ctrl+	Z Y	n ∝ [] 3, 2 2 0 ℓ ≝ 100% 👤	
	Cu Co	t PY		Ctrl+	X C		
	Pa: Pa: Se	ste ste as l lect All	New Ima	ge Chrl+			
_			6.0	P. 1 . 1			
Pastes	s the c	ontent	s or the	cippoard	as a new	Image	