- FPGA pin buffers can be configured for
 - Voltage
 - impedance,
 - Slew rate
 - Pull(up/down)

- IO columns include Xilinx SelectIO resources
 - Register (SDR/DDR in IOLOGIC)
 - Fine-grained delay adjustment (IODELAY)
 - Serializer/Deserializer (IOSERDES)

- Challenge: High Data Rates, Low Power (!)
- IODDR (IDDR/ODDR)

Even Higher Rates: LVDS Serial Transmission

LVDS: Low Voltage Differential Signalling

LVDS: Low Voltage Differential Signalling

- Steps for deserialization
 - Receive signal with proper termination and convert from differential to single-ended
 - Recover transmission clock from LVDS clock
 - Align input data to recovered clock (sub-bit)
 - Convert serial data to parallel data
 - Align parallel data at word level

- Steps for deserialization
 - Receive signal with proper termination and convert from differential to single-ended
 - Recover transmission clock from LVDS clock
 - Align input data to recovered clock (sub-bit)
 - Convert serial data to parallel data
 - Align parallel data at word level

• IBUF(G)DS

- Primitive for buffering input differential signals
- G variant must be used when signal is clock and output goes to MMCM/PLL
- Optional 100 Ohm termination (for LVDS)

- Steps for deserialization
 - Receive signal with proper termination and convert from differential to single-ended
 - Recover transmission clock from LVDS clock
 - Align input data to recovered clock (sub-bit)
 - Convert serial data to parallel data
 - Align parallel data at word level

Reminder: FPGA Clocking

MMCM

- Multiply input clock by the serialization factor
- Feedback not required, we don't care about phase alignment
- Outputs go to los (fast clock) and internal logic (slow clock)
- Which buffers to use? (BUFG/BUFR/BUFIO)

Reminder: FPGA Clocking

MMCM

- Multiply input clock by the serialization factor
- Feedback not required, we don't care about phase alignment
- Outputs go to IOs (fast clock) and internal logic (slow clock)
- Which buffers to use? (BUFG/BUFR/BUFIO)
 - Use BUFG whenever possible (global reach)
 - Use BUFR/BUFIO when BUFG is not fast enough

- Steps for deserialization
 - Receive signal with proper termination and convert from differential to single-ended
 - Recover transmission clock from LVDS clock
 - Align input data to recovered clock (sub-bit)
 - Convert serial data to parallel data
 - Align parallel data at word level

- IODELAY (IDELAY/ODELAY)
 - Primitive for fine-grained delay on pin-to-fabric or fabric-to-pin paths
 - 31 "taps" (delay values from original signal)
 - Delay increments are PVT independent
 - Can change delay during operation
 - Useful for calibration of delay to daughterboards etc

- IDELAY Calibration
 - Span range of IDELAY, looking for a transition in the output
 - When a transition is encountered, we increase or decrease the IDELAY by half a bit period
 - Afterwards, the sampling is in the middle of the data eye
 - Discussion: limitations for this type of calibration

- Steps for deserialization
 - Receive signal with proper termination and convert from differential to single-ended
 - Recover transmission clock from LVDS clock
 - Align input data to recovered clock (sub-bit)
 - Convert serial data to parallel data
 - Align parallel data at word level

SERDES (Serializer/Deserializer)

- SERDES (Serializer/Deserializer)
 - SDR/DDR input/output
 - Up to 8 bits SDR/DDR with a single SERDES primitive, up to 14 bits DDR with two SERDES primitives (master/slave)
 - CLK and CLKDIV must be phase-aligned
 - Outputs of parallel BUFR and BUFIO are phase-aligned by design, for this purpose
 - Bitslip mechanism for aligning data at word level

Implementation Constraints

- Implementation constraints affect
 - IO placement (pin where signal is connected)
 - IO buffer type (voltage of pin)
 - IO buffer properties (slew, pullup etc)
 - Timing
 - Clock period
 - Offsets before and after clock
 - Multi-cycle paths etc.
 - Resource placement

Implementation Constraints

- IO constraints
 - Placement: LOC constraint
 - NET "<signal>" LOC=<pin name>
 - Buffer type (IOSTANDARD=<pin type>)
 - LVTTL, LVCMOS12/15/18/25/33, LVDS
 - Many others...
 - Same type for all pins in a bank
 - Drive strength (DRIVE=<mA>)
 - PULLUP/PULLDOWN

Implementation Constraints

- Resource placement
 - LOC constraint can also place Slices, BRAMs, DSPs
 - AREA_GROUP and RANGE constraints
 - Define a placement constraint for all logic of a certain type within the block
 - May be specified separately for each resource type: Logic/Distributed RAM/Block RAM/DSP
 - Example: constrain all logic driven by a BUFR to the clock region of the BUFR:

```
AREA_GROUP "pblock_bufr"
RANGE=CLOCKREGION_X1Y2:CLOCKREGION_X1Y2;
```

Further Reading

- Xilinx 7-Series IO Resources User Guide
- Xilinx Constraints Guide
- Xilinx PlanAhead Floorplanning Tutorial